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Abstract
Using a kink of arbitrary shape as a toy model for a black hole (horizon), we
study the back-reaction of the evaporation process and find that the horizon is
always pushed back (as in the gravitational case). The associated heat capacity
and entropy variation, on the other hand, can be positive or negative, depending
on the parameters.

PACS numbers: 04.62.+v, 04.70.Dy

1. Motivation

Our standard picture of black holes includes several rather odd features, which might give
us some hints about quantum gravity. Due to the Hawking effect [1], black holes evaporate
by emitting thermal radiation with the temperature being inversely proportional to the mass3.
Hence they constantly lose energy via this evaporation process, and thereby their horizon
shrinks. As a result, their heat capacity is negative, i.e. they get hotter by losing energy
(see footnote 3). Finally, the generalization of the second law of thermodynamics to black
holes yields an entropy, which is proportional to the surface area (instead of the volume, for
example).

In order to understand the oddity of these features, it is useful to construct toy models
which reproduce some of the relevant properties of black holes, but are still simple enough to
do the calculations (which we cannot do in quantum gravity). In the following, we propose a
very simple toy model for black-hole evaporation and study these issues; see [2].

3 For simplicity, we consider the asymptotically flat Schwarzschild metric only, i.e. a black hole without charge and
angular momentum. Otherwise, we would have to distinguish different heat capacities in analogy to cp and cV in
thermodynamics.
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2. Kink dynamics

Let us start by briefly reviewing some of the basic properties of kinks, see, e.g., [3, 4]. To this
end, we consider a scalar field ψ in 1+1 dimensions (h̄ = 1):

Lψ = 1
2

(
ψ̇2 − c2

ψ [∂xψ]2
) − V (ψ), (1)

where the potential is supposed to be non-negative V (ψ) � 0 such that its zeros ψn denote the
degenerate classical ground states V (ψn) = 0. Furthermore, we assume a very stiff potential
which allows us to approximate the quantum field ψ by a classical solution (plus small quantum
corrections). For any (non-negative) potential V (ψ) with more than one ground state, there
exists at least one stable topological defect in the form of a static kink solution ψkink(x) which
connects two adjoining zeros ψkink(x → −∞) = ψn and ψkink(x → +∞) = ψn+1 or vice
versa (anti-kink). These kinks are finite-energy solutions of the classical field equations and
their stability (even in the non-static case) is protected by topology. The static kink solution
ψkink(x) satisfies c2

ψ [∂xψkink]2 = 2V (ψkink) (virial theorem) and hence obeys the implicit
relation

ψkink = ψkink(x) ↔ x(ψ) = ±
∫ ψ dψ̃√

2V (ψ̃)
. (2)

A moving kink can be described in terms of the collective coordinate X[t] determining the
kink position. Accordingly, we split up the total quantum field ψ into a classical kink solution
with a quantized position operator X[t] (in the non-relativistic limit Ẋ2 � c2

ψ ) plus quantum
corrections via

ψ(t, x) = ψkink(x − X[t]) + δψ(t, x). (3)

In order to avoid double counting [3, 4], we demand δψ ⊥ ∂xψkink (see below). The insertion
of this (non-relativistic) ansatz into the action (1) yields

Lψ = 1

2
MeffẊ

2 − 1

2

∫
dx δψ

(
∂2
t − c2

ψ∂2
x − V ′′(ψkink)

)
δψ + O(δψ3), (4)

plus an irrelevant constant. The differential operator on the rhs is self-adjoint and non-
negative (since the kink is stable). It possesses one zero mode which is just given by ∂xψkink

and corresponds to a translation of the kink (i.e. to X[t]). Since this mode is excluded from
the Hilbert space δψ ⊥ ∂xψkink, all other modes have positive energies (stability).

3. Hawking radiation

Taking the kink (with a well-defined kinetic energy) as a model for the black hole (horizon),
we may now add the ingredient of Hawking radiation. To this end, we introduce a light
(massless) scalar quantum field φ coupled to the classical kink solution according to

Lφ = 1
2

(
[∂tφ + gψ∂xφ]2 − c2

φ[∂xφ]2
)
. (5)

In this way, the light field φ propagates in this kink background in the same way as in a curved
spacetime with the effective metric [5]

ds2 = (
c2
φ − v2

)
dt2 − 2v dt dx − dx2, (6)

where v = gψ denotes the local frame-dragging velocity. If this velocity v exceeds the
propagation speed cφ , we get the analogue of a black-hole horizon. Exploiting the analogy to
gravity, we may introduce the pseudo energy–momentum tensor of the field φ:

Tµν = 2√−g

δAφ

δgµν
= (∂µφ)(∂νφ) − 1

2
gµν(∂ρφ)(∂ρφ). (7)
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Note that this quantity is not conserved itself in general ∂µT µ
ν �= 0; see the appendix. Instead,

the analogue of the covariant energy–momentum balance,

∇µT µ
ν = 1√−g

∂µ

(√−gT µ
ν

) − 1

2
T αβ∂νgαβ = 0, (8)

contains a term T αβ∂νgαβ/2 which describes the exchange of energy/momentum between
the φ-field and the gravitational field (in curved spacetimes) or the ψ-field (in our case); see
the appendix. Fortunately, in 1+1 dimensions, the expectation value of T µ

ν determining the
Hawking radiation can be calculated analytically via the trace anomaly [6]. For example,
the mixed component

〈
T 0

1

〉
which will become relevant reads (for an arbitrary massless scalar

field)
〈
T 0

1

〉 = 4vcφ(κ2 − [v′]2 − γ vv′′) − κ2(cφ + v)2

48πc3
φγ 2

, (9)

with γ = 1 − v2
/
c2
φ and the effective surface gravity κ determining the Hawking temperature

is given by the velocity gradient at the horizon [5]4:

THawking = κ

2π
= 1

2π

(
dv

dx

)
v2=c2

φ

. (10)

4. Back-reaction

Now let us estimate the back-reaction of the emitted Hawking radiation onto the kink. Variation
of total action in equations (4) plus (5) w.r.t. the collective coordinate X yields

MeffẌ = g

∫
dx T 0

1 ∂xψkink + O(δψ2), (11)

i.e. the acceleration of the kink induced by the evaporation process is determined by the
overlap between the translational zero-mode ∂xψkink and the above component of the pseudo
energy–momentum tensor (9). Inserting the expectation value, we see that v′〈T 0

1

〉
is a total

differential and hence we get

Meff〈Ẍ〉 = −2v2(v′)2 + cφκ2(v − cφ)

48πc3
φγ

∣∣∣∣∣
+∞

−∞
= κ2

48π(v + cφ)

∣∣∣∣∣
+∞

−∞
. (12)

Consequently, the kink is pushed back by the emitted Hawking radiation.
This result can also be understood via the energy–momentum balance. Far away from the

kink, we may estimate the energy–momentum tensor of the outgoing Hawking radiation and
the associated in-falling partner particles via the geometric-optics approximation by replacing
φ̇ → � and φ′ → k and using the dispersion relation (� + vk)2 = c2

φk2. For the component
(9), this yields

T 0
1 = [∂tφ + v∂xφ]∂xφ → − cφ�2

(cφ + v)2
. (13)

Identifying � ∼ κ , this expression coincides with equation (9) far away from the kink, where
v′′ and v′ approach zero. The above quantity is the momentum density, which should not be
confused with the energy flux density

T 1
0 = φ̇

[
vφ̇ +

(
v2 − c2

φ

)
φ′] → cφ�2, (14)

4 Note that calculating the expectation value 〈T µ
ν 〉 via the trace anomaly does not tell us that the radiation is thermal—

this property can be inferred from a direct derivation of the Bogoliubov coefficients; see, e.g., [2] and references
therein.
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which is constant. (For a static kink, this is even true exactly, i.e. without the geometric-optics
approximation.) Finally, the energy density is given by

T 0
0 = 1

2

(
[∂tφ]2 +

(
c2
φ − v2

)
[∂xφ]2

) → cφ�2

cφ + v
, (15)

and within the geometric-optics approximation (i.e. neglecting the trace anomaly), one obtains
the same expression for the pressure T 1

1 = −T 0
0 . Therefore, the particles of the Hawking

radiation carry away positive energy and momentum, but their in-falling partner particles act
in the opposite way and carry negative energy and momentum. Consequently, the energy flux
is balanced, but the momentum flux is not. The pressure outside the horizon is positive and the
pressure inside is negative, i.e. both contributions generate a force onto the kink in the same
direction and hence the horizon is pushed back. Identifying � ∼ κ , the pressure difference
yields the same force as in (12). Note that the asymptotic values of 〈T µ

ν 〉 can also be calculated
directly from the Bogoliubov coefficients, i.e. without any reference to the trace anomaly and
possible renormalization ambiguities (cf the appendix).

The expectation value (9) was evaluated in the Unruh state, which describes the
evaporation process and thus contains outgoing thermal radiation, but no incoming particles.
Adding an equal amount of incoming thermal radiation (e.g., by placing a mirror for the φ-field
far away from the kink) would correspond to the (1+1 dimensional) Israel–Hartle–Hawking
state. In this case, the relevant expectation value reads

〈
T̂ 0

1

〉
IHH = 4vcφ(κ2 − [v′]2 − γ vv′′)

48πc3
φγ 2

. (16)

In contrast to (9), this quantity is invariant under velocity reversal v → −v, and hence the
Israel–Hartle–Hawking state is regular across both (black and white holes) horizons v = ±cφ .
Nevertheless, the horizon is still pushed inwards:

Meff〈Ẍ〉IHH = − v2(v′)2 − c2
φκ2

24πc3
φγ

∣∣∣∣∣
+∞

−∞
. (17)

In gravity, the Israel–Hartle–Hawking state could describe a black hole surrounded by a large
spherical mirror and would correspond to a stationary (though not necessarily stable) state
of the total system (black hole plus radiation field). In contrast, the kink/horizon is still
pushed back in our toy model, i.e. the Israel–Hartle–Hawking state does not correspond to
an equilibrium state of the combined system (kink plus φ-field). This finding is related to
the fact that the Lagrangian of our toy model in equations (1) and (5) is only invariant under
time reversal if we simultaneously invert ψ → −ψ , which does not leave the background
kink solution unaffected, but turns it into an anti-kink (corresponding to a white-hole horizon
v → −v).

5. Conclusions

Using a kink of arbitrary shape as a toy model for a black hole (horizon), we found that the
back-reaction of the evaporation process always tends to push the horizon inwards (i.e. the
black hole to shrink, see also [7]). However, in contrast to real black holes in gravity, this
shrinkage is not caused by energy conservation, but by momentum balance (and even persists
for the Israel–Hartle–Hawking state).

Going a step further, one may also study the associated heat capacity and entropy variation
of the kink [2]. It turns out that both could be positive or negative, depending on the chosen
parameters.
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Together with other analogues of black holes (see, e.g., [5, 7, 8]), our findings suggest
that Hawking radiation and possibly the shrinkage of the horizon are quite robust phenomena,
which are fairly independent of the Einstein equations. In contrast, understanding the origin
of the black-hole entropy and heat capacity probably requires some aspects of the Einstein
equations.

Acknowledgments

RS acknowledges valuable discussions with Ted Jacobson, Bill Unruh, Renaud Parentani and
others at the workshop From Quantum to Emergent Gravity: Theory and Phenomenology
(SISSA, Trieste, Italy 2007) and Gerard Dunne, Daniel Grumiller and others at the 7th
workshop on Quantum Field Theory under the Influence of External Conditions (University of
Leipzig, Germany, 2007) as well as support by the Emmy-Noether Programme of the German
Research Foundation (DFG, SCHU 1557/1-2,3). CM is indebted to G Matsas for the support,
the ITP at TU Dresden for the hospitality and Fundação de Amparo à Pesquisa do Estado de
São Paulo for financial support.

Appendix A

Let us compare the pseudo energy–momentum tensor Tµν of the field φ in equation (7) with
the total energy–momentum tensor Tµ

ν derived from the full Lagrangian L = Lψ + Lφ with
respect to the Minkowski metric. Since Lφ does not contain derivatives of the ψ-field, we get

Tµ
ν = Tµ

ν [ψ] + Tµ
ν [φ] =

[
∂Lψ

∂ψ,µ

∂νψ − δµ
ν Lψ

]
+

[
∂Lφ

∂φ,µ

∂νφ − δµ
ν Lφ

]
. (A.1)

Obviously, the sum of both contributions must be conserved in a meaningful renormalization
scheme ∂µ

〈
Tµ

ν

〉 = 0, but each part is separately not conserved in general ∂µ

〈
Tµ

ν [ψ]
〉 =

−∂µ

〈
Tµ

ν [φ]
〉 �= 0, i.e. there will be an exchange of energy/momentum between the two fields,

which is precisely the back-reaction force under consideration. Using the equations of motion
for ψ and the assumption that ψ should be well approximated by a classical field, we get

∂µ

〈
Tµ

ν [ψ]
〉 = [

ψ̈ − c2
ψ∂2

xψ + V ′(ψ)
]
∂νψ = −g 〈[∂tφ + gψ∂xφ]∂xφ〉 ∂νψ. (A.2)

Since the expectation value on the rhs is just
〈
T0

1[φ]
〉
, this equality is the analogue of

equation (11) and shows that the energy/momentum exchange is determined by ∂µ

〈
Tµ

ν [ψ]
〉 =

−〈
T0

1[φ]
〉
∂νv.

Now, even though the two tensors Tµν[φ] and Tµν are defined w.r.t. different metrics and
hence cannot be compared in general Tµν[φ] �= Tµν , it turns out that the mixed components
coincide Tµ

ν [φ] = T µ
ν . Hence, switching from the Minkowski metric to the effective metric

gµν in equation (6), we find

∂µ

〈
T µ

ν

〉 = ∂µ

〈
Tµ

ν [φ]
〉 = −∂µ

〈
Tµ

ν [ψ]
〉 = 〈

T0
1[φ]

〉
∂νv = 〈

T 0
1

〉
∂νv = 1

2 〈T αβ〉∂νgαβ. (A.3)

Thus, by exploiting the total energy–momentum conservation ∂µ

〈
Tµ

ν

〉 = 0, we are able to derive
the covariant balance law ∇µ

〈
T µ

ν

〉 = 0 instead of just assuming it (note that
√−g = const).

This is a non-trivial statement because the validity of ∇µ

〈
T µ

ν

〉 = 0 forces us to abandon the
conformal invariance

〈
T µ

µ

〉 = 0 which leads to the trace anomaly [6]. Demanding ∇µ

〈
T µ

ν

〉 = 0
is then a condition on the used renormalization scheme and is usually motivated via covariance
arguments (whose applicability is not obvious in our model).
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